#### **Presenters**

- Kevin Pape, Over-the-Rhine Foundation, Gray & Pape
- **Sanyog Rathod**, Over-the-Rhine Foundation, Sol Developments
- **Ed Lee**, Habitat for Humanity



### Project partners









#### **Presentation Outline**

- Presentation compares the eco-profile of renovating existing vacant historic homes to that of newly constructed homes.
- The purpose of this effort is to evaluate the environmental benefit of reusing existing vacant buildings in our historic neighborhoods.
- The presentation is based on an ongoing project of renovating two existing homes in the historic neighborhood of Over-the-Rhine, Cincinnati, Ohio.

### **Learning Objectives**

- LCA measure building performance over its life-cycle
- Evaluate environmental impact of construction assemblies over its manufacturing, operational and post-use life cycle.
- Historic buildings can be a better environmental choice for green developments.



#### **Presenters**

- **Ed Lee**, Habitat for Humanity
- Kevin Pape, Over-the-Rhine Foundation, Gray & Pape
- Sanyog Rathod, Over-the-Rhine Foundation, Sol Developments

### Project partners







### **Acknowledgements**

- Sol Developments Team
  - Erica Stauffer, Nate Steeber , Chris Dwyer
- Gray & Pape, GBBN, Messer



## Ed Lee, Cincinnati Habitat for Humanity





### Habitat for Humanity Historic, LEED, Affordable Rehab

- 1000's of homes that need love
- Social Equity
  - Need for Green
  - Neighborhood Diversity
  - Home Ownership
- Model for others to follow

## Life Cycle Comparison

HISTORIC RENOVATION VERSUS NEW CONSTRUCTION



HISTORIC RENOVATION VERSUS NEW CONSTRUCTION

## Kevin Pape, OTR Foundation, Gray & Pape



## Over-the-Rhine





Life Cycle Comparison

HISTORIC RENOVATION VERSUS NEW CONSTRUCTION







## Over-the-Rhine's Italianate Architecture





## **OTR Churches**

Phillippus Kirche:
Constructed in 1891 is most famous for its "hand to God" steeple top and its pipe organ donated by the famed Moerlein brewing family.





### OTR Was Once Home to Almost 50 Breweries









## Our Farmers' Market





## **OTR** Institutions



Music Hall: America's oldest, large-scale music hall, and home to one of America's oldest symphonies and opera companies. Site of presidential debates and numerous historic events.



Washington Park: Cincinnati's second oldest public park



### Life Cycle Comparison

HISTORIC RENOVATION VERSUS NEW CONSTRUCTION





## Life Cycle Comparison





### 24 W. Elder



### 1737 Elm







## Life Cycle Comparison

## 2008 Over-the-Rhine Green Historic Study







### The project began with a common assumption:

 Historic preservation and green design have conflicting goals.









## Goal of the 2008 Study

Explore potential conflicts and commonalities between the goals of historic preservation and those of environmental preservation and determine:

- What genuine conflicts exist?
- Can we identify ways to overcome them?
- In what areas do "green" and historic share common values, design elements, and technique?
- Can green-historic be accomplished in a cost-effective manner?





## **Properties**

Properties were chosen for more than prototypical reasons.

They were also selected for containing both elements that we recognized as challenges and opportunities from the beginning.









## The Properties

• 1313 Clay St., originally a stable for Brauer Dairy.

 1420 Pleasant St., originally small tenement apartments.







## The Properties

- 1700 Vine St., originally a storefront with residential units above it.
- 1202-1204 Main St., the Belmain Building, originally constructed as a hotel for vaudeville performers.







## Relevant Findings

- Secretary of Interior Standards for Rehabilitation and LEED Green Building Certification can be achieved simultaneously in a cost-effective manner.
- OTR's inherent environmental benefits such as urban density, walkability reuse of existing buildings and infrastructure make it easier to attain higher levels of green certifications.
- Several character defining features of a historic buildings had a sustainable function. (Day-lit spaces, Operable windows, light wells, prismatic glass, door transoms, durable materials, natural ventilation)
- Current building codes need to adapt to facilitate both green practices and reuse of historic buildings.
- Proper communication can reduce project costs. Most "conflict" between meeting green certification and historic preservation result from misunderstanding or an inadequate understanding of options.

Visit <u>www.otrfoundation.org</u> for the complete 2008 OTR Green-Historic study.



## Sanyog Rathod

OTR Foundation, Sol Developments



# **Green Historic Study – Energy Modeling Objectives**

- Determine if historic buildings can obtain the minimum energy performance necessary to attain LEED certification, without compromising its historic character.
- Assess if contributing historic characteristics of the exterior envelope such as single-pane windows, storefronts, exterior brick walls, and skylights can be preserved while pursuing LEED certification.



# **Green Historic Study – Energy Modeling Methodology**

#### Belmain

OTR's prototypical mixed use buildings with single-pane wood windows, wood store fronts, brick exterior walls with plaster finish on the interior.

Belmain also represents most OTR buildings with **shared party-walls**.



Unique in terms of its historic interior finish. Given its historic use as a stable the exterior brick walls were always exposed on the interior.









### Life Cycle Comparison

#### PARAMETERS BELMAIN

|                   | Historic Baseline                                                   | Model #1 Balanced                                                                            | Model #2 Efficient                                                                                |
|-------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Target HERS Score |                                                                     | 85 Maximum                                                                                   | 85 Maximum                                                                                        |
| Perimeter walls   | As is: Combination of Exposed brick and empty stud framed bumpouts. | Where exposed to ambient conditions - rigid foam R10 + open cell spray foam in stud cavities | Where exposed to ambient conditions - open cell foam R-15 + open cell spray foam in stud cavities |
| Windows           | Double hung wood single paneU.9; SHGC.65                            | Storm windows over existing windows - U.58; SHGC .50; retail glazing U.40 SHGC.40            | High end window replacements U.19; SHGC .27; retail glazing U.3 SHGC .3                           |
| Basement Clg.     | Un-insulated                                                        | R10 continuous rigid foam on ceiling                                                         | R13 open cell foam to basement ceiling                                                            |
| Air Leakage       | .35 air changes per hour                                            | 20% improvement - tighter windows                                                            | 20% improvement - tighter windows                                                                 |
| Ceiling           | R30                                                                 | Same                                                                                         | Same                                                                                              |
| Parti Walls       | Building DOES abut other buildings                                  | Same                                                                                         | Same                                                                                              |

Minimum LEED requirements were used for following elements: HVAC System (SEER 13), Lighting, Appliances, Water Heater

Following elements of the building remained unchanged: Doors, Skylights

| RESULTS                               | Historic Baseline | Model #1 Balanced | Model #2 Efficient |
|---------------------------------------|-------------------|-------------------|--------------------|
| HERS Score Energy Performance         | 102               | 85                | 79                 |
| <b>End-Use Annual Costs</b>           | \$17,965          | \$15,105          | \$14,526           |
| <b>End-Use Energy Savings Annual</b>  | -                 | \$2,860           | \$3,439            |
| <b>Installed Cost of Improvements</b> | -                 | \$41,265          | \$102,375          |
| Annual Cash Flow                      | -                 | (\$299)           | (\$4,400)          |

#### PARAMETERS CLAY STREET

| •                       | Historic Baseline                          | Model #1 Balanced                            | Model #2 Efficient                                          |
|-------------------------|--------------------------------------------|----------------------------------------------|-------------------------------------------------------------|
| Target HERS Score       |                                            | 85 Maximum                                   | 85 Maximum                                                  |
| Perimeter walls         | Exposed brick                              | Exposed brick                                | Open cell foam R-15 behind drywall and on interior of brick |
| Windows                 | Double hung wood single paneU.9; SHGC.65   | High end windows replacements U.19; SHGC .27 | High end windows replacements U.19;<br>SHGC .27             |
| Floor above<br>basement | Un-insulated slab                          | R25 continuous spray foam to ceiling         | R13 open cell foam beneath slab                             |
| Air Leakage             | .35 air changes per hour                   | 20% improvement - tighter windows            | 20% improvement - tighter windows                           |
| HVAC                    | 14 SEER heat pumps                         | Dual fuel heat pumps, 16 SEER                | Same as historic                                            |
| Ceiling                 | R30                                        | R49                                          | Same as historic                                            |
| Water heaters           | 40 gal electric units                      | Tankless natural gas                         | Same as historic                                            |
| Parti Walls             | Building does NOT abut any other buildings | Same                                         | Same                                                        |

Minimum LEED requirements were used for following elements: Lighting, Appliances,

| RESULTS                               | Historic Baseline | Model #1 Balanced | Model #2 Efficient |
|---------------------------------------|-------------------|-------------------|--------------------|
| HERS Score Energy Performance         | 159               | 85                | 85                 |
| <b>End-Use Annual Costs</b>           | \$12,899          | \$5,962           | \$6,409            |
| End-Use Energy Savings Annual         | -                 | \$6,940           | \$6,492            |
| <b>Installed Cost of Improvements</b> | -                 | \$80,344          | \$90,117           |
| Annual Cash Flow                      | -                 | \$787             | (\$409)            |



## Relevant Findings

- Energy simulation tools can help make balanced decision to preserve historic character while attaining overall energy efficiency.
- Conflicts primarily related to un-insulated walls and historic windows.
- Party walls contribute tremendously to energy efficiency due to minimized heat loss.
- Future areas of study Quantify intrinsic sustainable value of OTR – urban density, community connectivity, walkability, public transportation, and reuse of infrastructure & existing buildings.

Visit <u>www.otrfoundation.org</u> for the complete 2008 OTR Green-Historic study.



## Life Cycle Comparison

#### **Approach**

 Habitat's green historic renovation in OTR – a perfect canvas to conduct a Life-cycle comparison of historic versus new.

#### **Objectives**

- Quantify the head-start historic buildings in OTR offer for sustainable developments in terms of building reuse and urban lifestyle.
- Quantify the amount of embodied energy saved by reusing an existing building.
- Compare the environmental benefits of historic renovation versus constructing new over all phases of the lifecycle.







### Why Embodied Energy?









- Production of Building Materials involve an extensive network of extraction, processing and transportation steps. These steps pollute the air and water, destroy natural habitat and deplete natural resources.
- Construction and demolition waste comprise about 40% of the total solid waste stream in U.S (136 million tons per year). 43% of which is generated from residential sources. 2008 USGBC
- People can live in a house for 10 years before the energy they
  use in it exceeds what went in to its components steel,
  concrete, windows, flooring, drywall, wood and its
  construction. 2006 worldchanging



## **Building Life Cycle Phases**

Phase1 Manufacturing

Raw Material Extraction

Manufacturing of Construction Materials

Building Construction Construction Materials

Phase 2
Operation

Repair & Replacement of Materials

Building Use Operating Energy Phase 3 End of Life

















Life Cycle Comparison

HISTORIC RENOVATION VERSUS NEW CONSTRUCTION



Elm Street Historic Baseline





Habitat New Construction Model 1





## Life Cycle Comparison

HISTORIC RENOVATION VERSUS NEW CONSTRUCTION

### Elm Street Historic-Green Considerations

- Built in 1857, vacant for over two decades.
- Exterior Restoration





Photo – Adam Nelson, Habitat





#### Elm Street Historic-Green Considerations

Interior Historic characteristics preserved







Photos – Adam Nelson, Habitat



## **Construction Assembly Parameters**

|                          | Elm Renovation                                    | Habitat New                                        | Elm New     | National Average |
|--------------------------|---------------------------------------------------|----------------------------------------------------|-------------|------------------|
|                          | Historic Baseline                                 | New Model 1                                        | New Model 2 | New Model 3      |
| Home Conditioned<br>Area | 1,827 SF                                          | 1,320 SF SF                                        | 1,827 SF    | 2,600 SF         |
| Basement                 | 814 SF                                            | 660 SF                                             | 814 SF      | 1300 SF          |
| Roof                     | New EPDM and sheathing over existing wood framing | Wood truss, Sheathing,<br>Shingles over Roof felt. | Same        | Same             |
| Walls - Exterior         | Existing Brick                                    | Wood studs 2x4,<br>Sheathing, Vinyl siding         | Same        | Same             |
| Walls - Interior         | Wood 2x4, GWB                                     | Wood 2x4, GWB                                      | Same        | Same             |
| Floors                   | Existing wood framing                             | Wood Joist 2x10 @<br>16"OC                         | Same        | Same             |
| Slab                     | Existing slab                                     | Poured Concrete 4" thk.                            | Same        | Same             |
| Foundation               | Existing stone                                    | Concrete Footing                                   | Same        | Same             |



## **Operating Energy Simulation Parameters**

|                           | Elm Renovation                                                                                  | Habitat New                                                                             | Elm New                                | National<br>Average                          |
|---------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|
|                           | Historic Baseline                                                                               | New Model 2                                                                             | New Model 2                            | New Model 3                                  |
| HERS Score                | 76                                                                                              | 63                                                                                      | 66                                     | 65                                           |
| <b>LEED Certification</b> | YES                                                                                             | YES                                                                                     | YES                                    | YES                                          |
| Home Conditioned<br>Area  | 1,827 SF                                                                                        | 1,320 SF SF                                                                             | 1,827 SF                               | 2,600 SF                                     |
| Basement                  | 814 SF                                                                                          | 660 SF                                                                                  | 814 SF                                 | 1300 SF                                      |
| Walls Above Grade         | ~R-6, 50% Existing brick<br>& plaster; 50% new rigid<br>over existing                           | R-16, 2x4 wood framed, batt insulation, with 3/4" continuous rigid insulation sheathing | Same as model 2                        | R-13, 2x4 wood<br>framed, batt<br>insulation |
| <b>Basement Wall</b>      | Stone – no insulation                                                                           | R-16 Batt                                                                               | R-16 Batt                              | R-16 Batt                                    |
| Floor above<br>Basement   | R30 Batt                                                                                        | none                                                                                    | none                                   | none                                         |
| Foundation Wall           | none                                                                                            | R14 Rigid                                                                               | R14 Rigid                              | R14 Rigid                                    |
| Roof / Ceiling            | R-56 Spray Foam                                                                                 | R-38 Batt                                                                               | R-38 Batt                              |                                              |
| Windows                   | <b>U</b> 1                                                                                      | Vinyl Clad, U-value<br>0.35; SHGC 0.35                                                  | Vinyl Clad, U-value<br>0.35; SHGC 0.35 | Vinyl Clad, U-<br>value 0.35; SHGC<br>0.35   |
| Air Leakage               | 0.35 air changes per hour                                                                       | Same                                                                                    | Same                                   | Same                                         |
| HVAC                      | Natural Gas Furnace 93<br>AFUE. AC SEER 13                                                      | Same                                                                                    | Same                                   | Same                                         |
| Water heaters             | 40 gal gas 0.58                                                                                 | Same                                                                                    | Same                                   | Same                                         |
| Lighting and Appliances   | Energy Star Appliances<br>and 100% of lighting is<br>CFL; default U.S.<br>statistics plug loads | Same                                                                                    | Same                                   | Same                                         |



## Life Cycle Comparison

#### **Results** Primary Energy Consumption (MJ in thousands)



ManufacturingConstruction

Maintenance

End-Of-Life



Weighted Resource Use(kg in thousands)

500





#### Outputs from Athena Impact Estimator

## **Results** Primay Energy Consumption (MJ in thousands)



(kg in thousands)

102%

73%

20

Baseline Model 1 Model 2 Model 3

Weighted Resource Use





Life Cycle Comparison

#### Results

### Primary Energy (MJ in millions) Operating



**Outputs from Athena Impact Estimator** 



Global Warming (CO2 in thousands)





## Life Cycle Comparison















Graph representation method derived from MIT study created by Agbonkhese, Hughes, Tucker & Yu



# arrange on the section of Street and the street of the st Account the seed of seed the playing

Projjal Dutta, New York MTA

## Over-the-Rhine Urban Lifestyle

- Quantify intrinsic sustainable value of OTR in terms of urban density, community connectivity, and walkability.
- The carbon footprint of car commutes by home users is significant when compared to the energy used to run a home.
- Compare the environmental impact of commuting in Over-the-Rhine, Hyde park and Liberty Township.



Selected community resources and their frequency per year







Proximity of each case study to downtown Cincinnati

**Community Resource Commuting Study** 

Life Cycle Comparison





Community Resource Commuting Study



## Results

|                                                       | Over-the-<br>Rhine | Hyde Park | Liberty<br>Township |
|-------------------------------------------------------|--------------------|-----------|---------------------|
| Total miles driven for resources per year             | 1,661.88           | 3,073.24  | 3,355.16            |
| Total miles driven for work per year                  |                    |           |                     |
| Total megajoules used for driving per year            | 29,469.11          | 37,217.48 | 38,765.22           |
| Total CO <sub>2</sub> emissions from driving per year | 2.17 tons          | 2.74 tons | 2.85 tons           |
| Walkscore                                             | 85                 | 55        | 28                  |
| LEED Score (Location & Linkages)                      | 10                 | 6-10      | 3-7                 |

Community Resource Commuting Study







## Conclusions

- Renovating an existing historic home can save up to 50% of embodied energy when compared to a national average home.
- Regardless of new or existing, a small size home can have the least amount of operating energy as well as environmental impact.
- Operating energy contributes to the largest portion of the total life cycle energy hence reduction of energy use by occupants should be a primary consideration.
- Reduced automobile dependence through urban density and walkability can have also have a significant reduction in environmental impact.
- This study is a framework to conduct more LCA on historic buildings

## Limitations

- Continue to quantify energy used in restoring historic building materials.
- Site work and Landscaping to be added to the Eco Footprint.
- Work commute to be included in lifestyle footprint.



## Closing Remarks





- Historic
  - Windows
  - Soffit
  - Brick
- Urban
  - Flat roof
  - Electric and Sewer
- LEED nothing significant!!!!







Collaboration





















## Life Cycle Comparison

- "OTR Green-Historic Study" disputes the assumption that "green" and historic exist in inherent conflict. Historic buildings can go green without compromising historic character.
- We already possess the tools that we need to put people back into historic buildings and make our historic urban neighborhoods centerpieces of environmentally responsible development.
- Demonstrating that neglected buildings in the urban core can be revitalized to historic and green standards, and that renovations can be done in an affordable manner, creates a benchmark for other housing developers to reference when considering green building projects.

## Over-the-Rhine Foundation Vision



Over-the-Rhine has roughly 500 vacant buildings, and hundreds more in need of significant restoration. This liability can become one of Cincinnati's greatest strengths.



We have a vision of making Overthe-Rhine America's greenest historic neighborhood.



# 0&A

 This Study and the 2008 OTR Green Historic Study can be viewed at www.otrfoundation.org



